MRD-CI Stationary Points, Dissociation Energies, and Conical-Intersection Potentials of the Four Lowest Doublet States of NH₂

Raffaella Brandi, Erminia Leonardi, and Carlo Petrongolo*

Dipartimento di Chimica, Università di Siena, Pian dei Mantellini 44, I-53100 Siena, Italy Received: January 31, 1997; In Final Form: April 22, 1997[®]

The MRD-CI equilibrium structures, transition energies, barriers to linearity, and dissociation energies of the \tilde{X}^2B_1 , \tilde{A}^2A_1 , and \tilde{B}^2B_2 electronic states of NH₂ have been calculated with large AO and natural MO bases. We have also investigated the two-dimensional potentials for the $C_{2\nu} \tilde{A}^2A_1/\tilde{B}^2B_2$ and $C_{\infty\nu} 1^2\Pi/1^2\Sigma^-$ conical intersections. The theoretical energies, mainly the barriers to linearity, are in good agreement with the experimental values, and the \tilde{B}^2B_2 state is bound with respect to its dissociation limits. The $\tilde{A}^2A_1/\tilde{B}^2B_2$ and $1^2\Pi/1^2\Sigma^-$ states intersect at energies larger than 38 000 cm⁻¹ and at the beginning of the corresponding dissociation channels N + H₂ and NH + H, thus affecting the NH₂ photodissociations.

1. Introduction

Since the first works of Herzberg and Ramsay¹ and of Dressler and Ramsay² on the $\tilde{A}^2A_1 \leftarrow \tilde{X}^2B_1$ spectrum of NH₂, many authors investigated several structural and dynamical properties of this radical. For example, Bell and Shaefer³ (BS) have predicted a third electronic state, \tilde{B}^2B_2 , with a very small bond angle, and Peyerimhoff and Buenker⁴ (PB), in their study on several valence and Rydberg species, have shown that \tilde{B}^2B_2 correlates with $1^{2}\Sigma_{u}^{+}$ at $D_{\infty h}$ and intersects conically the $\tilde{A}^{2}A_{1}$ state. Vetter et al.⁵ (VZKDP) have then extended the PB work by computing vertical excitation energies and two-dimensional (2D) potentials of several states at the \tilde{X}^2B_1 experimental bond angle. The $1^{2}\Pi_{u}$ Renner-Teller $\tilde{A}^{2}A_{1} \leftarrow \tilde{X}^{2}B_{1}$ rotoelectronic spectrum has been fully investigated by Jungen et al.⁶ (JHM), by Buenker et al.⁷ (BPPM), and by Gabriel et al.⁸ (GCRCH), and finally Saxon et al.⁹ (SLL), Biehl et al.,¹⁰ and VZKPD have studied some photodissociations.

The first two electronic states, \tilde{X}^2B_1 and \tilde{A}^2A_1 , are now wellknown. However, the third, \tilde{B}^2B_2 , state is not so well characterized: it has not been observed up to now, the older onedimensional studies on its potential^{3,4,11} were carried out with rather small basis sets for the present standard, and the recent 2D work⁵ was not interested in the $\tilde{A}^2A_1/\tilde{B}^2B_2$ conical intersection. Moreover, nothing is known on the $1^2\Pi/1^2\Sigma^-$ conical intersection, which has been predicted only on symmetry grounds¹² and can be important for the photodissociation of NH₂ to NH + H.

We therefore report in this paper the results of CI calculations of the optimized equilibrium structures, barriers to linearity, and dissociation energies to NH + H and N + H₂ of the \tilde{X}^2B_1 , \tilde{A}^2A_1 , and \tilde{B}^2B_2 states, by employing large AO and natural MO bases. We have also calculated the $C_{2\nu}$ and $C_{\infty\nu}$ 2D potentials for the conical intersections $\tilde{A}^2A_1/\tilde{B}^2B_2$ and $1^2\Pi/1^2\Sigma^-$, respectively.

The present work is complementary to the recent one by VZKDP,⁵ who have investigated the NH₂ electronic vertical spectrum of several doublet states and the 2D potential surfaces of the eight lowest-lying doublets with a constant bond angle value. VZKDP have used a smaller AO basis than ours, because they were mainly interested in obtaining 2D potentials for photodissociation studies. On the other hand, the aim of our work is to calculate accurate structural data of NH₂ and to point

out that two low-lying conical intersections should be taken into account in the photodissociation dynamics of NH₂.

2. Method

We have employed the well-known Buenker–Peyerimhoff multireference singles and doubles configuration interaction method (MRD-CI), with configuration selection, energy extrapolation, and full-CI estimate.^{13,14}

Our AO basis comprises 122 contracted Gaussian functions: the well-tempered nitrogen¹⁵ (14s9p) and hydrogen¹⁶ (9s) primitive valence sets have been contracted to [6s5p] and to [6s], respectively, with the Raffenetti technique¹⁷ and have been augmented by (3d2f) and (3d1p) polarization functions,¹⁸ respectively, by nitrogen Rydberg AOs¹⁹ (2s1p) and finally by (2s2p) bond functions (BFs).⁷

It has been shown that balanced basis sets which are equally good in both atomic and molecular regions should contain both nuclear- and bond-centered polarization functions.²⁰ The BFs polarize both bonded atoms, introduce new virtual MOs which are important at the CI level, and in most cases converge the CI energy faster than conventional polarization AOs. They therefore improve both dissociation energies and potential curves, spectroscopic constants, and vibrational levels. The effect of the BFs is therefore genuine and not due to a presumed increased basis set superposition error,²⁰ which is minimized in this work by a large nuclear-centered AO basis and by calculating the dissociation limits at large but finite fragment distances.

The MO basis of each electronic state has been obtained from its SCF calculations and has been transformed to a natural-orbital (NO) representation which diagonalizes a small-CI first-order density matrix. Seven electrons have been correlated among the 120 NOs, by keeping doubly occupied the nitrogen 1s and by omitting its highly excited counterpart.

Table 1 reports the technical details of the final CI calculations, both for the bound molecule and for the dissociation products: the configurations with $C^2 \ge 0.001$ define the reference set and the selection threshold is equal to 5 μ hartrees. The dissociation limits NH + H or N + H₂ have been computed at the N-H or N-H₂ center-of-mass distances equal to 20 bohrs, respectively.

Our reference and selected spaces are smaller than VZKDP⁵ ones because (1) the present NO bases optimize the MO spaces and therefore the CI convergence of each state; (2) VZKDP

^{*} Corresponding author. E-mail: petro@carlo.icqem.pi.cnr.it.

[®] Abstract published in Advance ACS Abstracts, July 1, 1997.

 TABLE 1: Details of the MRD-CI Calculations at the

 Minimum Energy Points and at the Dissociations^a

state	R	G	S	$\sum_r C_r^2 b$
$NH_2(\tilde{X}^2B_1, 1b_2^23a_1^21b_1)$	9	1 773 360	6007	0.960
$\tilde{A}^2 A_1, 1b_2^2 3a_1 1b_1^2$	11	2 071 162	5935	0.964
$\tilde{B}^{2}B_{2}$, $1b_{2}^{2}3a_{1}^{2}1b_{1}^{2}$	11	1 964 949	5999	0.961
$1^{2}\Pi_{\rm u}, 1\sigma_{\rm u}^{2}1\pi_{\rm u}^{3}$	13	1 443 038	5016	0.966
$1^{2}\Sigma_{u}^{+}, 1\sigma_{u}^{1}\pi_{u}^{4}$	14	1 518 307	4785	0.964
$1^2\Sigma^{-}$, $3\sigma^21\pi^24\sigma^c$	13	2 423 084	5557	0.965
$NH(\tilde{X}^{3}\Sigma^{-}) + H(\tilde{X}^{2}S_{g})$	5	1 435 559	5994	0.962
$\tilde{a}^{1}\Delta$	15	2 668 046	5727	0.969
$ ilde{ extbf{b}}^1\Sigma^+$	14	2 736 769	5785	0.963
$\mathrm{NH}(\tilde{a}^2\mathrm{D}_\mathrm{u}) + \mathrm{H}_2(\tilde{X}^1\Sigma_\mathrm{g}^+)$	21	2 678 139	4307	0.976

^{*a*} *R*, *G*, and *S* are the numbers of reference, generated, and selected configurations, respectively. ^{*b*} Contribution of the reference configurations. ^{*c*} Rydberg 3s state at $D_{\infty h}$; valence state at NH + H dissociation.

TABLE 2: Equilibrium Structures, Transition Energies, and Barriers to Linearity of \tilde{X}^2B_1 , \tilde{A}^2A_1 , and $\tilde{B}^2B_2{}^a$

state	ref	R _e	$ heta_{ m e}$	$T_{\rm e}$	$T_{ m v}$	B_l
$\tilde{X}^2 B_1$	BS ³	1.944	103.1			12 804
	BPPM ⁷	1.933	102.9			12 330
	this work	1.935	105.1			$12\ 028\pm 79^{b}$
	JHM ⁶	1.954	102.4			12 024
	GCRCH ⁸	1.938	103.7			11 914
	expt ²¹	1.935	103.4			
$\tilde{A}^2 A_1$	BS^3	1.889	143.4	11 830		974
	BPPM ⁷	1.871	143.0	113 50		980
	this work	1.905	148.0	11 225	16 364	803 ± 79^{b}
	JHM ⁶	1.903	144.2			730
	GCRCH ⁸	1.882	145.9			863
	expt ^c	1.897	144.0	11 036	167 26	
$\tilde{\mathbf{B}}^2\mathbf{B}_2$	BS^3	2.196	47.5	38 640		
	PB^4	2.195	50.0	37 101	53 547	46 941
	this work	2.105	52.0	36 304	53 417	$44\ 934\pm 77^{b}$

^{*a*} R_e in bohr, θ_e in degrees, and energies in cm⁻¹. ^{*b*} Optimum R = 1.920 bohr at linearity. ^{*c*} R_e and θ_e from ref 21; T_e estimated from the experimental T_0 and from the theoretical ω_i ;⁸ T_v is the energy of the absorption intensity maximum.²²

have employed ${}^{4}B_{1}$ SCF MOs for all the states because they were interested in several species of the same symmetry and in larger portions of 2D potentials, thus needing larger reference and selected spaces.

3. \tilde{X}^2B_1 , \tilde{A}^2A_1 , and \tilde{B}^2B_2 States

Table 2 reports the present equilibrium bond lengths R_e , bond angles θ_e , transition energies T_e , vertical energies T_v , and barriers to linearity B_l which are compared with some previous results: the theoretical ones of BS,³ PB,⁴ and BPPM;⁷ the findings of JHM⁶ and GCRCH⁸, who have fitted some observed $\tilde{A}^2A_1 \tilde{X}^2B_1$ rovibronic levels by employing one-dimensional model and three-dimensional exact Hamiltonians, respectively; and the experimental values of Herzberg²¹ and of Halpern *et al.*²² Because the full-CI limit is perturbatively estimated, the energies at linearity of the \tilde{X}^2B_1 , \tilde{A}^2A_1 , and $1^2\Pi_u$ states and of the \tilde{B}^2B_2 and $1^2\Sigma_u^+$ ones are slightly different; we thus report in Table 2 the average values and the standard deviations of the barriers to linearity. The SCF energy and full-CI estimate of the \tilde{X}^2B_1 state at the calculated equilibrium structure are equal to -55.587 006 and -55.840 087 hartrees, respectively.

The present \tilde{X}^2B_1 and \tilde{A}^2A_1 *ab-initio* results reproduce accurately those of JHM⁶ and GCRCH⁸, whose potentials have been refined with respect to some observed energy levels. Our R_e values are within 0.02 bohr of the fitted results, and the θ_e data are 1.4–3.8° larger than those of JHM and GCRCH and closer to the more accurate latter fitting. The \tilde{X}^2B_1 barrier to

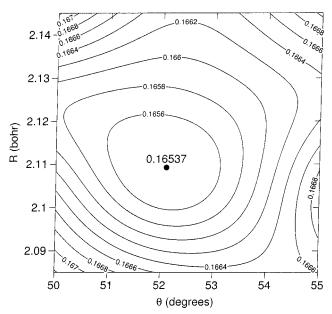


Figure 1. \tilde{B}^2B_2 equilibrium structure. Contour plot of the $C_{2\nu}$ potential. Energy in hartree with respect to the \tilde{X}^2B_1 minimum.

linearity is equal to $12028 \pm 79 \text{ cm}^{-1}$, in very good but accidental agreement with the JHM value; it is however just 114 cm^{-1} greater than the GCRCH barrier, thus improving remarkably the previous BS³ and BPPM⁷ theoretical data. We obtain similar accurate results for the \tilde{A}^2A_1 energies, because the differences between the present T_e , T_v , and B_l values and the experimental or GCRCH ones are equal to 189, -362, and -60 cm^{-1} , respectively. Although this finding shows that our \tilde{A}^2A_1 potential seems slightly too flat, the comparison of the vertical energy T_v is uncertain, because the experimental value corresponds to the intensity maximum of the absorption spectrum.²² Our \tilde{A}^2A_1 most interesting result concerns the barrier to linearity of $803 \pm 79 \text{ cm}^{-1}$: its lower and upper limits are indeed very close to the JHM and GCRCH values, respectively.

The equilibrium structure of the third \tilde{B}^2B_2 state has been previously calculated by BS³ and PB⁴ with smaller AO and CI expansions. Our results confirm the large-distance and smallangle structure of this state, whose $C_{2\nu}$ potential near the minimum is given in Figure 1. This surface is very flat, and its equilibrium values show that the \tilde{B}^2B_2 state is more stable than that predicted by BS and PB.

From the correlations between the NH₂ states and the NH + H or N + H₂ dissociation limits,⁵ we have calculated the stateto-state dissociation energies D_e of the \tilde{X}^2B_1 , \tilde{A}^2A_1 , and \tilde{B}^2B_2 states of NH₂. Table 3 compares our results with previous theoretical and experimental values, where the latter are obtained from D_0 ,²³ from the zero-point energies,^{8,24} and from the N term values.²⁵

Our \tilde{X}^2B_1 dissociation energies to NH + H and N + H₂ are in good agreement with the experimental values, by representing more than 98% of the latter ones. This result improves remarkably the previous theoretical data of SLL⁹ and VZKDP,⁵ and it is due to the present larger AO basis, mainly to the bond functions, because the geometry optimization of NH₂(\tilde{X}) and NH(\tilde{X}) increases D_e by 231 cm⁻¹ only. Also the theoretical $\tilde{A}^2A_1 D_e$ values are close to the experiment. However, the overstimation of the NH + H dissociation limit is due to a partial cancellation of our errors for D_e of NH₂(\tilde{X}) and for T_e of NH₂-(\tilde{A}) and NH(\tilde{a}); moreover, the larger error for N + H₂ corresponds to the greater weight of the reference configurations of this dissociation limit (see Table 1).

TABLE 3: State-to-State Dissociation Energies (cm $^{-1})$ of $\tilde{X}^2B_1,\,\tilde{A}^2A_1,\,and\,\tilde{B}^2B_2$

		NH+	$H(\tilde{X}^2S_g)$	
NH_2	ref	NH	$D_{\rm e}$	$\mathrm{N}(\tilde{a}^{2}\mathrm{D}_{\mathrm{u}}) + \mathrm{H}_{2}(\tilde{X}^{1}\Sigma_{\mathrm{g}}^{+}) D_{\mathrm{e}}$
$ ilde{X}^2 B_1$	SLL ⁹ VZKDP ⁵ this work	$\tilde{X}^{3}\Sigma^{-}$	31 133 32 101 33 752	43 860
$\begin{array}{l} \tilde{A}^2 A_1 \\ \\ \tilde{B}^2 B_2 \end{array}$	expt this work expt BS ³ PB ⁴	$\tilde{a}^{1}\Delta$	34 326 ^a 36 141 35 856 ^c	$\begin{array}{c} 44\ 504^{b}\\ 32\ 635\\ 33\ 468^{d}\\ 6900\\ 6763^{e}\end{array}$
	this work	$\tilde{b}^1\Sigma^+$	19 143	7556

^{*a*} From the experimental²³ D_0 and from NH₂ theoretical⁸ and NH experimental²⁴ ω_i and x_{ij} . ^{*b*} From the D_0 values^{23,24} of NH₂(\tilde{X}), NH(\tilde{X}), and H₂(\tilde{X}) and from the N(\tilde{a}) term value,²⁵ corrected for the zero-point energies.^{8,24} ^{*c*} From D_e of NH₂(\tilde{X}) \rightarrow NH(\tilde{X}) + H(\tilde{X}), T_e (NH₂, \tilde{A}) of Table 2, and T_e (NH, \tilde{a}).²⁴ ^{*d*} From D_e of NH₂(\tilde{X}) \rightarrow N(\tilde{a}) + H₂(\tilde{X}) and T_e (NH₂, \tilde{A}) of Table 2. ^{*e*} From the calculated energy of N(\tilde{X}) + H₂(\tilde{X}) and the experimental term value of N(\tilde{a}).²⁵

 TABLE 4: Equilibrium Bond Lengths and Energies of the NH States^a

state	$R_{ m e}$	$T_{ m e}$
$egin{array}{c} ilde{X}^3\Sigma^- \ ilde{a}^1\Delta \ ilde{b}^1\Sigma^+ \end{array}$	1.978 (1.958) 1.974 (1.954) 1.939 (1.958)	13 614 (12 566) 21 965 (21 202)

^a Distance in bohr, energies in cm⁻¹, and experiment²⁴ in parentheses.

The $\tilde{B}^2 B_2$ state is bound by 19 413 or 7556 cm⁻¹ with respect to NH + H or N + H₂, respectively, and it can thus support several rovibrational bound states and resonances because its potential surface is very flat near the minimum. The dissociation energy to N + H₂ is larger than that estimated by BS³ or PB,⁴ in agreement with the respective equilibrium structures given in Table 2. However, a nearly vertical dipolar transition from the ground state in C_s symmetry gives a weak photodissociation⁹ to NH + H and a stronger one to N + H₂, because the $\tilde{B}^2 B_2 T_v$ energy is 2030 cm⁻¹ below and 9557 cm⁻¹ above the two dissociation limits, respectively.

Finally, Table 4 compares the theoretical and experimental equilibrium structures of the first three electronic states of NH, which belong to the corresponding NH + H(\tilde{X}) dissociation limits of NH₂. Our transition energies T_e of the NH states $\tilde{a}^1\Delta$ and $\tilde{b}^1\Sigma^+$ are overestimated by 1048 and 763 cm⁻¹ with respect to the experimental values,²⁴ which seem difficult to reproduce theoretically. These errors are indeed larger than those we have obtained for NH₂, and only Staemmler and Jacquet²⁶ have calculated a better $T_e(\tilde{a}^1\Delta)$ probably because their AO basis is more suitable for NH than ours.

4. $\tilde{A}^2A_1/\tilde{B}^2B_2$ and $1^2\Pi/1^2\Sigma^-$ Conical Intersections

The conical intersection between the \tilde{A}^2A_1 and \tilde{B}^2B_2 states has been previously investigated with a smaller AO basis, by calculating the nonadiabatic vibronic couplings and a diabatic representation along some one-dimensional cross sections.¹¹ For example, it has been found that these states intersect at R =1.935 bohr (the experimental ground state value) and $\theta \approx 64.5^\circ$, at about 40 150 cm⁻¹ above the \tilde{X}^2B_1 minimum value. Nevertheless, the \tilde{B}^2B_2 bond length is somewhat larger than that of the ground state (see Table 2), and we have therefore investigated the $C_{2\nu}$ potentials of these two states with the present larger AO basis.

Figure 2 shows the $1^2A'$ and $2^2A'$ adiabatic potentials in the region of their conical intersection; the dashed line represents the intersection locus; the $C_{2\nu}$ symmetry of the lower $1^2A'$ is

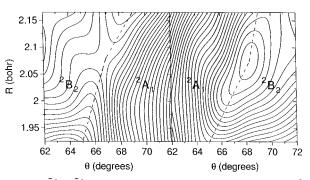


Figure 2. $\tilde{A}^2 A_1 / \tilde{B}^2 B_2$ conical intersection. Contour plots of the $1^2 A'$ (left) and $2^2 A'$ (right) adiabatic potentials, with energy in hartree with respect to the $\tilde{X}^2 B_1$ minimum and $\Delta E = 0.001$ hartree. The dashed line shows the intersection locus. $1^2 A'$ (left): innermost contours at 0.175 hartree; the energy is increasing or decreasing along or perpendicular to the intersection locus, respectively. $2^2 A'$ (right): innermost minimum contour at 0.175 hartree.

 ${}^{2}B_{2}$ or ${}^{2}A_{1}$ on the left or on the right of the intersection line, respectively, and vice versa for the upper 2²A' state. The CI potentials have been calculated at 48 points (R,θ) and have been interpolated with the spline technique. Owing to the limited number of points, the interpolation masks the discontinuity of the surfaces at the intersection locus, which is also slightly different in the two contour plots. Nevertheless, the 1²A' saddle region or the 2²A' minimum valley along the intersection and the greater slope of the ${}^{2}A_{1}$ regions are clearly recognizable. We estimate that the intersection minimum is at $R = 2.08 \pm$ 0.02 bohrs and $\theta = 67.5 \pm 1^{\circ}$, with energy equal to 38 400 \pm 100 cm⁻¹ with respect to the \tilde{X}^2B_1 minimum, *i.e.* about 2100 cm^{-1} above the $\tilde{B}^2B_2 T_e$ value. These results are close to the corrisponding ones for the H₂O⁺ isoelectronic ion:²⁷ $R \approx 2.05$ bohrs and $\theta \approx 74.4^{\circ}$, and $E \approx 38\ 600\ \mathrm{cm}^{-1}$, *i.e.* about 2200 cm^{-1} above the \tilde{B}^2B_2 potential minimum.

According to the PB,⁴ SLL,⁹ and VZKDP⁵ calculations, the $2^{2}B_{1}$ is unbound, has a large $2^{2}B_{1} \leftarrow \tilde{X}^{2}B_{1}$ transition moment, and should thus be very important in the NH₂ adiabatic photodissociation to NH($\tilde{a}^{1}\Delta$) + H. Nevertheless, the $2^{2}B_{1}$ state correlates⁴ with $1^{2}\Sigma^{-}$, which intersects¹² the $1^{2}\Pi$ species at $C_{\infty v}$, and therefore the $2^{2}B_{1}$ can photodissociate nonadiabatically to NH($\tilde{X}^{3}\Sigma^{-}$) + H.

Figure 3 reports the $C_{\infty \nu}$ adiabatic potentials for the $1^2\Pi/$ $1^{2}\Sigma^{-}$ conical intersection, which corresponds to a $1\pi/4\sigma$ MO crossing. The C_s symmetry of both states is ²A", and the $C_{\infty \nu}$ symmetries are shown on the two sides of the intersection line. The minimum intersection point is at $R_1 = 1.94 \pm 0.02$ bohr, $R_2 = 3.12 \pm 0.02$ bohrs, and $E = 41\ 200 \pm 100\ \mathrm{cm}^{-1}$, *i.e.* about 29 200 and 7400 cm⁻¹ above the NH₂(1² Π) and NH($\tilde{X}^{3}\Sigma^{-}$) + H equilibrium structures, to which converge the ${}^{2}\Pi$ or ${}^{2}\Sigma^{-}$ sheets of the 1²A" surface, respectively. Note that this lowestenergy point represents the barrier for the ground-state collinear reaction NH + N \rightarrow NH₂, that this barrier is removed in C_s symmetry,⁵ and that the $1^{2}\Sigma_{g}^{-}$ saddle point at $D_{\infty h}$ is at 47 967 cm⁻¹ and R = 2.555 bohrs. The 1² Π main configuration is changed from $3\sigma^2 1\pi^3$ to $3\sigma 1\pi^3 4\sigma$, according to the configuration of the NH($\tilde{X}^3\Pi$) + H dissociation products. On the contrary, the $1^2\Sigma^-$ species keeps its $3\sigma^2 1\pi^2 4\sigma$ configuration, equal to that of NH($X^{3}\Sigma^{-}$) + H, but the character of the 4 σ MO is now changed from Rydberg 3s of N to valence 1s of H.

5. Conclusions

The present MRD-CI calculations have been carried out with a large AO basis of 122 contracted Gaussian functions and by correlating seven electrons among 120 NOs of each electronic state. By including in the reference set all the configurations

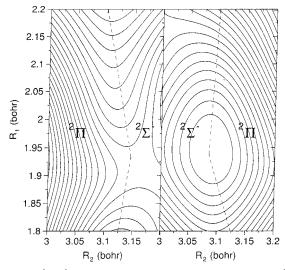


Figure 3. $1^{2}\Pi/1^{2}\Sigma^{-}$ conical intersection. Contour plots of the $1^{2}A''$ -(left) and $2^{2}A''$ (right) adiabatic potentials with energy in hartree with respect to the $\tilde{X}^{2}B_{1}$ minimum and $\Delta E = 0.001$ hartree. The dashed line shows the intersection locus. $1^{2}A''$ (left): innermost contours at 0.188 hartree; the energy is increasing or decreasing along or perpendicular to the intersection locus, respectively. $2^{2}A''$ (right): innermost minimum contour at 0.188 hartree.

with a weight of at least 0.001, the NO basis minimizes the dimensions of the reference and of the selected spaces and always gives a reference contribution larger than 0.96.

We have calculated the equilibrium structures, the adiabatic and vertical transition energies, the barriers to linearity, and the dissociation energies of the \tilde{X}^2B_1 , \tilde{A}^2A_1 , and \tilde{B}^2B_2 electronic states. The corresponding experimental values have been well reproduced, and previous calculations have been improved. The barriers to linearity of the first two species are in good agreement with the best results deduced from experiment, and the differences between the theoretical and the observed dissociation energies are smaller than 2.5%. The low-angle structure of $\tilde{B}^2 B_2$ has been confirmed, and we have shown that this state has a very flat C_{2v} potential in the equilibrium region and that it is bound with respect to the NH + H and $N + H_2$ dissociation limits. We have finally investigated the potentials of the $\tilde{A}^2A_1/$ \tilde{B}^2B_2 and $1^2\Pi/1^2\Sigma^-$ pairs, which intersect conically at energies greater than 38 000 cm⁻¹. The corresponding nonadiabatic effects should thus not affect the rovibronic spectrum of the \tilde{X}^2B_1 and \tilde{A}^2A_1 states, but they should be more important for the NH₂ photodissociations.

Acknowledgment. The authors are very grateful to Professor R. J. Buenker for a copy of the MRD-CI programs. This work has been supported by the Consiglio Nazionale delle Ricerche (Grant 95.01187.CT03 and Istituto di Chimica Quantistica ed Energetica Molecolare di Pisa) and by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (grants 40% and 60%).

References and Notes

(1) Herzberg, G.; Ramsay, D. A. J. Chem. Phys. 1952, 20, 347.

- (2) Dressler, K.; Ramsay, D. A. Philos. Trans. R. Soc. London A 1959, 251, 553.
 - (3) Bell, S.; Schaefer, H. F., III. J. Chem. Phys. 1977, 67, 5173.
 - (4) Peyerimhoff, S. D.; Buenker, R. J. *Can. J. Chem.* **1977**, *57*, 3182.
 (5) Vetter, R.; Zülicke, L.; Koch, A.; van Dishoeck, E. F.; Peyerimhoff,
- S. D. J. Chem. Phys. 1996, 104, 5558.
 (6) Jungen, C.; Hallin, K. J.; Merer, A. J. Mol. Phys. 1980, 40, 25.
- (7) Buenker, R. J.; Peric, M.; Peyerimhoff, S. D.; Marian, R. Mol. Phys. 1981, 43, 987.
- (8) Gabriel, W.; Chambaud, G.; Rosmus, P.; Carter, S.; Handy, N. C. Mol. Phys. 1994, 81, 1445, and references therein.
- (9) Saxon, R. P.; Lengsfield, B. H., III; Liu, B. J. Chem. Phys. 1983, 78, 312.
- (10) Biehl, H.; Schönnenbeck, G.; Stuhl, F.; Staemmler, V. J. Chem. Phys. **1994**, 101, 3819, and references therein.
- (11) Petrongolo, C.; Hirsch, G.; Buenker, R. J. Mol. Phys. 1990, 70, 825.
- (12) Carter, S.; Mills, I. M.; Dixon, R. N. J. Mol. Spectrosc. 1984, 106, 411.
- (13) Buenker, R. J.; Peyerimhoff, S. D. Theor. Chim. Acta 1974, 35, 33.
- (14) Knowles, D. B.; Alvarez Collado, J. R.; Hirsch, G.; Buenker, R. J. J. Chem. Phys. **1990**, *92*, 585, and references therein.
- (15) Huzinaga, S.; Klobukowski, M.; Tatewaki, H. Can. J. Chem. 1985, 63, 1812.
 - (16) van Duijneveldt, F. B. IBM Res. Rep. 1971, RJ945.
 - (17) Raffenetti, R. C. J. Chem. Phys. 1973, 58, 4452.
 - (18) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
- (19) Dunning, T. H., Jr.; Hay, P. J. In *Modern Theoretical Chemistry*; Schaefer, H. F., III, Ed.; Plenum: New York, 1977; Vol. 2, Chapter 1.
- (20) Wright, J. S.; Barclay, V. J.; Buenker, R. J. Chem. Phys. 1987, 115, 23, and references therein.

(21) Herzberg, G. *Molecular Spectra and Molecular Structure*; Van Nostrand Reinhold: New York, 1966; Vol. 3, p 584.

- (22) Halpern, J. B.; Hancock, G.; Lenzi, M.; Welge, K. H. J. Chem. Phys. 1975, 63, 4808.
- (23) Gibson, S. T.; Greene, J. P.; Berkovitz, J. J. Chem. Phys. 1985, 83, 4319.
- (24) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure; Van Nostrand Reinhold: New York, 1979; Vol. 4.

(25) Moore, C. H. Atomic Energy Levels; Nat. Bur. Stand.: Washington, DC, 1949; Vol. I.

- (26) Staemmler, V.; Jaquet, R. Theor. Chim. Acta 1981, 59, 501.
- (27) Jackels, C. F. J. Chem. Phys. 1980, 72, 4873.